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When honiogeneous turbulence acts upon a non-uniform magnetic field B,(x, t ) ,  
a mean electromotive force &(x, t )  is in general established owing to the corre- 
lation between the velocity field and the fluctuating magnetic field that is 
generated. The relation between 8 and B, is linear, and it is generally believed 
that, when the scale of inhomogeneity of B, is sufficiently large, it can be ex- 
pressed as a series involving successively higher spatial derivatives of B, : 

d?i = ail B,, + Pilm r?B,,/8xm + . . . , 
where the tensors tla, Pilm, . . . are determined (in principle) by the statistical 
properties of the turbulence and the magnetic diffusivity h of the fluid. These 
tensors are of crucial importance in turbulent dynamo theory. In  this paper the 
question of their asymptotic form in the limit h -+ 0 is considered. By putting 
h = 0 and assuming that the field is non-random at an initial instant t = 0,  the 
developing form of the tensors ait(t) and Pilm(t) is determined. The expressions 
involve time integrals of Lagrangian correlation functions associated with the 
velocity field, which are comparable in structure with the eddy diffusion tensor 
in the analogous turbulent diffusion problem (Taylor 1921). Some doubts are 
expressed concerning the convergence of the time integrals as t -+ 00, and it is 
concluded that a satisfactory treatment of the problem will require the inclusion 
of weak diffusion effects (as recognized by Parker 1955). 

1. Introduction 
The object of this paper is to point out certain fundamental difficulties in 

the theory developed by Parker (1955, 1970, 1971~-f) to explain the generation 
of magnetic fields in astrophysical bodies. The theory is in effect a high con- 
ductivity (or small magnetic diffusivity) counterpart of the theory of Krause 
(1967) and Radler (1968a, b ) . t  Certain aspects of the low conductivity limit 
have been considered by Moffatt (1970a). 

Let U(X, t )  be a solenoidal turbulent velocity field, statistically homogeneous 
in x and stationary in t, and having zero mean. Let B(x, t )  be a magnetic field 

t These papers, and others on the same topic by F. Krause, K. H. Riidler and M. Steen- 
beck, have been translated into English by P. H. Roberts & M. Stix, and are available as 
Technical Report TN/lA-60 (June 1971) of the National Center for Atmospheric Research, 
Boulder, Colorado. 
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having no sources other than electric currents within the fluid. The evolution of B 
is governed by the solenoidal condition V . B = 0 and the induction equation 

asfat = V A (U A B) + hV2B, (1.1) 

where A is the magnetic diffusivity of the fluid. Of particular interest is the 
evolution of the ensemble average field 

B,(x, t )  = (Wx, t ) ) .  

aB,/at = V A (u A b) + hV2B,, 

(1.2) 

(1.3) 

This satisfies the averaged equation 

where b = B - B,. A primary aim of turbulent dynamo theory is to obtain an 
expression for the mean electromotive force 8 = (u A b) in terms of B,, so that 
(1.3) can be integrated. 

The equation satisfied by b is 

2{b)  = ab/at- V A (u A b-  (u A b)) -hV2b = V A (U A B,). (1.4) 

We shall suppose that 
b(x,O) = 0 

so that (1.4) establishes a linear relationship between b and B,, and so between 
(u A b) and B,. On the assumption that the scale L of inhomogeneity of B, is 
large (L  9 I,, where Z, is a typical correlation length) this linear relationship 
may be developed as a series (see, for example, Roberts 1971), 

G,(x,t) = ( u ~ b ) ,  = ail(t)Boz+~izm(t)aBoz/axm+ ..., (1.6) 

where aiz(t), /3iz,(t), . . . are pseudo-tensors determined solely by the statistical 
properties of the turbulence and the parameter A ;  their dependence on t arises 
through the condition (1.5), which clearly implies aiz(0) = 0, Pizm(0) = 0. 

When the magnetic Reynolds number R,, defined by 

R, = u,Z,/A, U, = (u')*, (1.7) 

is small, it  is known that ail(t),Pilm(t), ... quickly settle down to asymptotic 
steady values; in particular (Moffatt 1970aT) in the case of turbulence that is 
rotationally symmetric, 

a, = a&, a: N - L / k - 2 F ( k )  3h dk, (1.8) 

where P(k) is the helicity spectrum function, with the property 

r m  

( u . V A U )  = J  F ( k ) d k .  
0 

Moreover, in this limit, the term involving Pt., makes a negligible contribution 
to (1.3) compared with the strong diffusion term AV2B,. 

7 The factor 6 in equation (3.1 1) of Moffatt ( 1 9 7 0 4  is incorrect, and should be replaced 
by +. 
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When R, is large, and in particular in the limit R,, -+ 00, the situation is far 
less clear. First, it  is by no means certain that, in the limit h -+ 0,  ct,(t) and 
pil,(t) do settle down to asymptotic steady values as t -+ co. If they do, then on 
dimensional grounds 

uo, p uol,, (1.10) 

where a and /3 are typical components of ail, pil, - say 

a = Id.. 22)  p = I 6%3k .. p.. 23k9 . (1.1 la, b )  

the estimates (1.10) arise in models developed by Parker (1955, 1970, 1971b). 
If they do not, then the ultimate values of uQ, Pitm must depend on h through 
relationships of the form 

a N Ud'(Rrn), P N u o ~ c g ( R m )  (1.12a, b)  

and it would then be desirable to obtain the asymptotic form of the functions 
f(R,) and g(R,) for R, --f co. In  the case of rotationally symmetric turbulence, 
,!? is just the eddy diffusivity for magnetic field and a relation of the form (1.12b) 
is certainly not out of the question; a qualitative theory of Moffatt (1961) in 
fact gave 

P (UOU R i  (1.13) 

in the limiting situation R, -+ 00, R/R,  + 00, where R = uol,/v and v is the 
kinematic viscosity; this theory was based on estimating the spectrum of 
magnetic fluctuations and calculating the consequent increase in ohmic dissipa- 
tion of magnetic energy.? 

The effectiveness of turbulent dynamos when R,, 9 1 is highly dependent on 
the appropriate value of the eddy diffusivity, and it is important to be able to 
distinguish between such alternatives as (1.10 b )  and (1.13). The question of the 
appropriate asymptotic value of u is likewise of crucial importance in such 
theories as that of Steenbeck & Krause (1966) for the generation of the solar 
and terrestrial magnetic fields. The uncertainty in the value of a can be illustrated 
in physical terms through reference to figure 1, which illustrates the process 
discussed by Parker (1970). Parker describes as a 'cyclonic event' a velocity 
field u ( x ,  t )  which is localized in, space and of limited duration and whose linear 
and angular momenta are related in such a way as to give a definite sense of 
twisting; i t  is evident that the total helicity 

I =  U . ( V A U ) d 3 X  s (1.14) 

for such a motion must be non-zero (positive in the situation illustrated in 
figure 1); it can be argued on dynamical grounds that such events are possible, 
and perhaps probable, in a thermally convecting rotating fluid. The event tends 
to distort a line of force in the manner indicated in figure 1 (a), and a loop appears 
having a projection on the plane perpendicular to the local (undisturbed) field B. 

f Radler (1968 b)  has made the point that different definitions of eddy diffusivity may 
well lead to  different values. 

1-2 
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(4 (b) 

FIGURE 1 .  Possible distortion of a line of force by a cyclonic event. 

From AmpBre’s law, this loop of field can be conceived as being due to a current j 
having a component parallel to B; i.e. 

j . B  = aB8, (1.15) 

the CL here being identifiable with the a introduced above. If the situation is 
strongly diffusive or if the event is sufficiently short-lived, then the perturbation 
field remains weak compared with the unperturbed field, and when I > 0, a is 
evidently negative consistent with the result (I  .S) .  

In  the weak diffusion limit however, and for more persistent events, the loop 
may be twisted any number of times (figure 1 b )  and the appropriate value of a 
may then apparently be positive or negative. For a random superposition of 
cyclonic events (with I > 0 in each), the asymptotic value of a may depend 
in a very sensitive way on the precise statistics of the velocity field. If the events 
are sufficiently short-lived and if different events are uncorrelated, then the 
limited twist picture of figure l ( a )  will presumably apply, so that a will be 
negative; on these specific assumptions, Parker (1970) obtained the following 
expression for ail: 

ail = +vl eijk (1 X,( a) aXJaa, d3a , (1.16) 

where X(a) is the total displacement during an event of the particle initially 
at a, the angular brackets indicate an average over events, and v1 represents the 
mean rate of occurrence of events per unit volume. Discussion of (1.16) is deferred 
until the comparable formula (3.3) below has been derived. 

A possible approach to the weak diffusion limit has been suggested by Roberts 
(1971); this is simply to restrict attention to the situation uOtc < I ,  when it may 
be reasonable to neglect the awkward term 

) 

G = V A (U A b - (U A b)) (1.17) 

in (1.4), and to evaluate b (in the limit h -f 0) from the equation 

ab/at = v A (U A Bo). (1.18) 
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Neglect of the term G (the ‘first-order smoothing approximation’) has also 
been advocated by Lerche (1971a, b )  in an attempt to find solutions of (1.3) 
without exploiting an expansion of the form (1.6). Unfortunately there appear 
to be few circumstances when the neglect of G when h +- 0 is justified, unless 
possibly a4ttention is restricted to a sea of random waves of small amplitude 
(e.g. inertial waves in a rotating fluid its considered by Moffatt 1970b)) rather 
than to turbulence as normally understood. Moreover if G is neglected, then the 
expression obtained for a in fact vanishes in the limit h +- 0. The reason is 
as follows (cf. the discussion of 5 4 of Moffatt 1970a) : since (1.6) is valid for any 
field distribution, aa may be calculated on the simple assumption that B, is 
uniform, in which case gi = ailBol is also uniform and so [from (1.1)] B, is 
constant in time. Equation (1.18) then becomes 

ab/at = B,. VU (1.19) 

and, defining the Fourier transform of $(x, t )  by 

$(k, w )  = //$(x, t )  exp{i(k. x - w t ) } d 3 k d o ,  (1.20) 

this becomes ~6 = -(k.B,)ii. (1.21) 

The fact that 6 and ii are exactly in phase then implies that 

(u A b) = j J ( B  ~ 6 * ) d 3 k d w  = 0. (1.22) 

A little dissipation (i.e. h =k 0) ,  or a little nonlinearity (i.e. G =k 0) is essential to 
provide an a-effect. In  the case of random inertial waves, this result is evident 
in the formulae (4.1)-(4.5) of Moffatt (1970b). 

2. Lagrangian treatment of the induction equation 

co-ordinates. Let 
In  the limit h -+ 0 ,  the solution of (1 .1)  is best expressed in terms of Lagrangian 

x = a+X(a,t) (2.1) 

X(a,O)  = 0. (2.2) 

Let v(a, t )  = aXlat = u(x(a, t ) ,  t )  (2.3) 

X,,(a, t )  = ax,& (2.4) 

be the equation of the path of the fluid particle satisfying 

be the Lagrangian velocity, and let 

be the Lagrangian deformation tensor, which gives a measure of the total 
deformation of an infinitesimal element of fluid initially a t  the point a during the 
time interval [0, t ] .  Also let 

vt,Ja, t )  = aX,,(a, t ) /at  = av6/8u, (2.5) 

be the Lagrangian rate of deformation tensor. 
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Certain properties of the random function v(a, t )  in stationary homogeneous 
turbulence have been obtained by Lumley (1962). In  particular, it  is known that 
the single-particle statistics of v(a,t) are stationary in time, but that the n- 
particle statistics are in general non-stationary for n < 2. For example, the 
correlation coefiaient 

r(a1- a2, t )  = (v(a,, 0 .  v(a,, t))/(v2(a, t ) )  (2.6) 

certainly tends to  zero as t -+ 00, since any two particles ultimately drift infinitely 
far apart with probability 1. However, r(a, - a,, 0 )  is arbitrarily near to 1 
when la,-a,l is sufficiently small (e.g. smaller than the Kolniogorov inner 
scale). Hence &/at + 0 in general, a i d  so the two-particle statistics of v(a,t) 
are non-stationary. 

This would seem to  imply also that, although v(a, t )  is stationary for fked a, 
v,Ja, t )  is in general non-stationary for fixed a since it involves the joint statistics 
of v at  two points a and a + 6a in the limit 6a -+ 0. This conclusion is consistent 
with the statement 

and the fact that au,/ax, is presumably a stationary random function of t even 
if evaluated on the random path (2.1) while axk/aa, is certainly a non-stationary 
random function oft. 

The solution of (1.1) with h = 0 (cf. Cauchy’s solution of the vorticity equation) 
is 

Now 6 =  (uAb) = (uAB), 
and so, from (2.8), 

B,(x, t )  = (X,,Ja, t )  + sij)Bj(a, 0). 

&Ax, t )  = cij,(vj(a, t )  (Xk.,da, t )  + 6,z) q a ,  O ) ) ,  (2.10) 

where, on the right-hand side, a(x,t) is to be regarded as a random function 
(for given x,t) varying from one realization of the flow to another. From the 
initial condition (1.5), (2.10) becomes 

a x ,  t )  = %jk(vj(a, t )  (Xk,d% t )  + 6k.J Bod% 0)). (2.11) 

3. Evaluation of ail(t) 

special case in which 

in which case B, remains also constant in time. Then (2.11) becomes gi = aiz(t.)Bol, 
where 

In order to evaluate ail(t), as mentioned in 5 1, we may simply consider the 

B,(x, 0 )  = constant, (3.1) 

a,z(t) = %jk+Jj(a, t )  X,,,(a, t ) )  ( 3 4  

since (v) = 0. It is instructive to express this as a time integral, 
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and to compare with Taylor’s (1921) expression for the eddy diffusivity tensor 
for a passive scalar field 

Didt) = (v,(a, 4 q(a ,  7 ) )  d7. (3.4) 1: 
Owing to the stationarity of v(a ,  t) for fixed a, the Lagrangian correlation 

R,(t - 7 )  = (v,(a, 4 q a ,  7 ) )  (3.5) 

is a function only of the time difference t - 7, and provided only that Ril(t,) is 
integrable in [O,oo],  

(3.6) D ~ ,  N lom ~ , ~ ( t , )  dt, as t + co. 

The Lagrangian correlation time t, may be defined by 

P m  

and the asymptotic result (3.6) is accurate for t > t,. 
It is tempting to apply the same formalism to (3.3), but we are now faced with 

the difficulty that v,,,(a, 7 )  is not stationary in r ( §  2), so that the Lagrangian 
correlation 

(3.8) Bjkl(t, 7 )  = (vj(a, t )  vk,l(a, 7)) 

may depend on t and 7 independently (and not just on the difference t - 7 ) .  It 
is reasonable to  suppose that 

Sjk l ( t ,~) -+O a t  t--7-+co (3.9) 

but this is not sufficient to guarantee the convergence of the integral (3.3) as 
t + 00. For example, if 

Sjkl(t,  7 )  = Cjlcl cos wt e-k(t-T), (3.10) 

(which is not implausible bearing in mind the discussion in § 1 of the physical 
process represented by figure l), then 

a&) = EijkCjkl k-1 cos ot, (3.11) 

which does not settle down to a constant value as t --f co. 
Unfortunately, the result (3.3) is of interest only if the integral does converge 

as t -+ co; for if not, then in a situation in which B,(x,t) is changing with time, 
the e.m.f. 8(x, t )  would depend on values of B,(x, t’) for arbitrarily large values 
oft - t’, and the assumptions underlying an instantaneous expansion of the form 
(1.6) would be invalid. Of course it is possible to conceive of kinematically possible 
velocity fields (as in effect done by Parker 1955) which get round the difficulty 
of the possible divergence of (3.3); for example, suppose that v ( a , t )  is first 
‘switched on’ for a time of order t,, then switched off for a long time of order 
t ,  = O(tg/h) to allow the small-scale field to be eliminated by diffusion, and that 
the whole process is then repeated, the statistical properties of v ( a , t )  being 
periodic with the period of the cycle. Then there is an effective cut-off when 
t = O(t,) to the integral (3.3). The need to invoke molecular diffusion was 
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emphasized by Parker (1955) and by Parker & Krook (1956), but the more 
formal treatment of Parker (1970) in fact makes no appeal to effects of 
molecular diffusivity and the expression (1.16) obtained by Parker (1970) in 
consequence shows no explicit dependence on A. 

The expression (3.3) may be compared with Parker's expression (1.16), with 
which it clearly has a certain formal resemblance. The advantage of (3.3) is that 
this expression is determinate for any turbulent velocity Jield and is (in principle) 
measurable by following the continuous deformation of small dye spots in 
a turbulent flow and averaging over spots.? The expression (1.16) is defined only 
in terms of a rather artificial model of turbulence (random cyclonic events) and 
it is not measurable, even in principle; the concept of a mean rate of occurrence 
of events is particularly elusive for a fully developed turbulent flow in which 
events merge in a distinctly nonlinear manner in both space and time. Moreover, 
the expression (1.15) conceals the possibility that aiz(t) as calculated on a h = 0 
basis may in fact diverge as t --f co, and that finite h effects may have to be con- 
sidered in this eventuality to determine the correct asymptotic beha.viour for 
large t .  

The structure of (3.3) is of particular interest when the turbulence is rotationally 
symmetric, in which case aiz(t) = a(t) Sit, where 

a(t)  = &ai,(t) = -- (v(a, t )  . V, A v(a, 7)) d7. 
3 0  s" (3.12) 

Note the appearance of the ' Lagrangian helicity correlation ' under the integral 
sign. If (u . Q A u) > 0 say, then it is certain that a(t) < 0 for t 4 t,; but there 
seems no obvious reason why a( t )  as defined by (3.12) should remain negative 
as t increases. The expression (3.12) may be compared with the expression (1.8) 
obtained in the strong diffusion limit. 

4. Evaluation of Pil,(t) 
From (1.3) and (1.6), 

'Boil'' = E i j k  akl Bol, j + ~ i j k  Pklm BOl,irn + * * . + 'Boi, kk ,  

aBOi,Jat = cijk Olkl Bol,jp + Eijk &lrnBol,j,, + . . - + hV2Bol,,k,. 

(4.1) 

(4.2) and so 

Hence if the field gradient tensor BOi,p is uniform initially then, according to 
(4.2), in strictly homogeneous turbulence Boi,p remains constant in time. It 
then follows from (4.1) that at  any point x 

~ 0 ~ x 7  t )  = Boi(x, 0 )  + e6fiik B,, js,t a k t ( 7 )  d7. (4.3) 

In  order to evaluate pizm(t), we may suppose that Bol,m is uniform (and so con- 
stant), and that 

(4.41 Bod', 0) = BOdx, 0) + (~-a)mBol,rn* 

t A numerical experiment to test the large time behaviour of components of S j r l ( t , ~ )  
or of the function n(t) defined by (3.12) would be of great interest. 



and Djm(t) is given by (3.4) above. Using (4.3), (4.5) may be expressed in the 
required form 

a x ,  t )  = ail@) Bo,(x, t )  + PiZ,(t) BOLrn9 (4.7) 

where 

This expression for PiZm(t) now reveals a double difficulty. First, the double 
integral of the triple Lagrangian correlation in (4.6) is even less likely to converge 
than the integral (3.3) defining a,,(t). Second, if akz(t) tends to a non-zero constant 
tensor as t -+ 00 (as envisaged by Parker 1970) then the integral in (4.8) certainly 
diverges, so that the ultimate level of Pil, can onZy be determined by considering 
the effects of weak diffusion. 

It is hard to escape the conclusion that when h 3 0 the eddy diffusivity p 
defined by (1.11 b)  in general increases without limit, and that a simple asymptotic 
relation of the form (1.10b) is unlikely to  be correct. This conclusion is a t  variance 
with that of Parker (1971 b) who argued that the eddy diffusivity for a magnetic 
field in the limit h -+ 0 should be identical with that for a scalar field (such as 
temperature) viz. $Dii(co). Parker’s argument, however, relied implicitly on the 
splitting of the correlation 

< v j h  t)  Xrnb t )  X,,,(a, t ) )  3 (vj(a> t )  X,(a, t ) )  <Xm,l(a, t)>, (4.9) 

a step for which there is no apparent justification. (If this step were justifiable, 
then it is hard to see why the simpler correlation splitt’ing 

(vj(a, t )  Xrn,,(a, t ) )  -+ (vj(a, t ) )  (Xm,da, t ) )  

would not be equally justifiable, in which case the tensor aiz(t) would necessarily 
vanish for all t . )  
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